Supplemental materials

Table S1: Alternative options for anti-Toxoplasma SAR-based optimization studies

Anti-Toxoplasma TS-4					
^a Compound	*MW	*AlogP	^b IC ₅₀ <i>T. gondii</i> (μΜ)	°CC₅₀ HFF (µM)	^d SI
MMV007273	480.57746	7.242	5.85	>30	>5.12
MMV666597	451.55946	8.149	6.28	>30	>4.78
MMV665820	293.53048	3.134	6.45	>30	>4.65
MMV006937	279.33638	4.353	8.22	>30	>3.65
MMV007591	496.68135	4.959	8.23	>30	>3.64
MMV009063	322.44394	4.479	8.72	>30	>3.44
MMV665886	385.86393	4.956	10.46	>30	>2.87
MMV085471	465.60917	7.814	11.16	>30	>2.69
MMV000483	341.44397	4.449	12.85	>30	>2.33
MMV665888	440.4474	4.475	13.15	>30	>2.28
MMV666023	453.53712	8.504	13.48	>30	>2.23
MMV019266	312.41258	4.458	13.93	>30	>2.15
MMV665809	395.72119	4.615	14.46	>30	>2.07
MMV666124	403.90566	3.902	14.92	>30	>2.01
MMV000444	367.48456	4.551	17.89	>30	>1.67
MMV001049	269.38132	3.634	18.07	>30	>1.66
MMV006389	359.41606	5.251	18.66	>30	>1.60
MMV666057	420.67648	4.242	19.04	>30	>1.57
MMV000442	315.83708	5.336	20.4	>30	>1.47
MMV667487	260.3381	1.121	20.6	>30	>1.45
MMV006429	409.50132	3.582	20.85	>30	>1.43
MMV019066	359.39958	1.599	20.93	>30	>1.43
MMV018984	278.30526	3.271	21.06	>30	>1.42
MMV665789	261.74664	3.751	21.37	>30	>1.40
MMV007571	301.40326	3.619	22.3	>30	>1.34
MMV666108	400.94155	3.86	24.04	>30	>1.24
MMV665971	484.95193	4.858	24.93	>30	>1.20
MMV019758	405.48947	4.252	25.68	>30	>1.19
MMV000448	279.37944	3.363	25.84	>30	>1.16
MMV008270	265.3098	3.867	26.2	>30	>1.14
MMV665953	333.57282	4.721	26.49	>30	>1.13
MMV019662	465.58449	4.632	26.62	>30	>1.12
MMV396744	405.46796	4.309	26.75	>30	>1.12
MMV665850	273.71758	3.229	26.83	>30	>1.10
MMV666110	411.62324	4.233	27.05	>30	>1.10
MMV019199	266.29786	2.598	28.12	>30	>1.06
MMV007695	657.7524	7.237	28.92	>30	>1.03
MMV080034	254.26234	2.82	28.99	>30	>1.03
PYR	-	-	3.62	-	-

^aCompounds are designated by their MMV identifier codes; ^bCompounds were serially diluted and tested in culture. Results are means from triplicate experiments; ^cCell cytotoxicity was evaluated in culture against Human Foreskin Fibroblasts and results expressed as means of triplicate experiments; ^dSelectivity indices were calculated based on the ratio CC₅₀(HFF)/IC₅₀ Test drugs; ^{*}Molecular weights and AlogP values were gotten as supporting information to the Malaria Box. Positive controls (PYR: Pyrimethamine; SDZ: Sulfadiazine; MTZ: Metronidazole).

Fig. S2: Structures and activity of MMV Malaria Box compounds against *T. gondii* TS-4 in vitro

Fig. S2 cont'd (1): Structures and activity of MMV Malaria Box compounds against *T. gondii* TS-4 *in vitro*

Fig. S2 cont'd (2): Structures and activity of MMV Malaria Box compounds against *T. gondii* TS-4 in vitro.

MMV identifiers and structures were provided by the MMV as part of the supporting information for the Open Access Malaria Box. Triplicate concentrations of serially diluted compounds were tested *in vitro* against *Toxoplasma gondii* TS-4 strain tachyzoites. IC₅₀ (50% inhibitory concentration) values were calculated from sigmoidal dose-response curves. Structure, MMV identifier, and IC₅₀ are shown for each listed compound.

S3: Sigmoidal Dose-Response Analysis Data

Malaria Box compounds hit Toxoplasma and Entamoeba

Anti-Toxoplasma activity

MMV007791

log(inhibitor) vs. normalized response –

Variable slope Best-fit values

 LogIC50
 -0.7265

 HillSlope
 0.3372

 IC50
 0.1877

Std. Error

LogIC50 0.08953 HillSlope 0.03020

95% Confidence Intervals

 LogIC50
 -0.9163 to -0.5367

 HillSlope
 0.2732 to 0.4012

 IC50
 0.1213 to 0.2906

Goodness of Fit

Degrees of Freedom 16 **R square** 0.9111 Absolute Sum of Squares 297.5 Sy.x 4.312

Number of points

Analyzed 18

MMV006704

log(inhibitor) vs. normalized response – Variable slope

Best-fit values

 LogIC50
 0.2890

 HillSlope
 0.7658

 IC50
 1.945

Std. Error

LogIC50 0.09433 HillSlope 0.1435

95% Confidence Intervals

LogIC50 0.07144 to 0.5065 HillSlope 0.4349 to 1.097 IC50 1.179 to 3.210

Goodness of Fit

Degrees of Freedom 8 **R square** 0.8411

Absolute Sum of Squares 406.4

Sy.x 7.127

Number of points

Analyzed 10

MMV007881

log(inhibitor) vs. normalized response –

Variable slope Best-fit values

 LogIC50
 0.02895

 HillSlope
 0.4256

 IC50
 1.069

Std. Error

LogIC50 0.1556 HillSlope 0.08035

95% Confidence Intervals

 LogIC50
 -0.3299 to 0.3878

 HillSlope
 0.2403 to 0.6109

 IC50
 0.4679 to 2.442

Goodness of Fit
Degrees of Freedom 8
R square 0.7933
Absolute Sum of Squares 194.1
Sy.x 4.925

Number of points

Analyzed 10

MMV007363

log(inhibitor) vs. normalized response –

Variable slope Best-fit values

 LogIC50
 0.1736

 HillSlope
 0.2945

 IC50
 1.491

Std. Error

LogIC50 0.1814 HillSlope 0.06941

95% Confidence Intervals

LogIC50 -0.2447 to 0.5918 HillSlope 0.1345 to 0.4546 IC50 0.5692 to 3.907

Goodness of Fit

Degrees of Freedom 8 **R square** 0.7047

Absolute Sum of Squares 193.2

Sy.x 4.914

Number of points

Analyzed 10

MMV020548

log(inhibitor) vs. normalized response – Variable slope

Best-fit values

 LogIC50
 0.5854

 HillSlope
 0.7808

 IC50
 3.850

Std. Error

LogIC50 0.06816 HillSlope 0.1300

95% Confidence Intervals

Goodness of Fit

Degrees of Freedom 8 **R square** 0.8590

Absolute Sum of Squares 456.4

Sy.x 7.554

Number of points

Analyzed 10

MMV085203

log(inhibitor) vs. normalized response – Variable slope

Best-fit values

 LogIC50
 0.6571

 HillSlope
 0.7855

 IC50
 4.541

Std. Error

LogIC50 0.08279 HillSlope 0.1636

95% Confidence Intervals

Goodness of Fit

Degrees of Freedom 8

R square 0.8006
Absolute Sum of Squares 755.9
Sy.x 9.720

Number of points

Analyzed 10

MMV666095

log(inhibitor) vs. normalized response – Variable slope

Best-fit values

 LogIC50
 0.4840

 HillSlope
 1.046

 IC50
 3.048

Std. Error

LogIC50 0.07736 HillSlope 0.2242

95% Confidence Intervals

IC50 "2.021 to 4.596"

Goodness of Fit

Degrees of Freedom 8

R square 0.8340
Absolute Sum of Squares 817.5
Sy.x 10.11

Number of points

Analyzed 10

Anti-Entamoeba activity

MMV666600

log(inhibitor) vs. response --Variable slope (four

parameters)
Best-fit values

 Bottom
 41.05

 Top
 99.85

 LogIC50
 1.028

 HillSlope
 4.543

 IC50
 10.66

 Span
 58.80

Std. Error

 Bottom
 3.063

 Top
 4.584

 LogIC50
 0.04604

 HillSlope
 1.263

 Span
 5.690

95% Confidence Intervals

Bottom 33.56 to 48.54
Top 88.63 to 111.1
LogIC50 0.9151 to 1.140
HillSlope 1.454 to 7.633
IC50 8.224 to 13.82
Span 44.87 to 72.72

Goodness of Fit

Degrees of Freedom 6 **R square** 0.9688

Absolute Sum of Squares 199.9

Sv.x 5.771

Number of points

Analyzed 10

MMV006861

log(agonist) vs. response --

Variable slope (four

parameters)

Best-fit values

Bottom 19.80 Top 96.06 LogEC50 1.192

 HillSlope
 5.806

 EC50
 15.58

 Span
 76.26

Std. Error

 Bottom
 2.831

 Top
 9.028

 LogEC50
 0.03540

 HillSlope
 6.667

 Span
 10.74

95% Confidence Intervals

Bottom 12.87 to 26.73 Top 73.97 to 118.1 LogEC50 1.106 to 1.279 HillSlope -10.51 to 22.12 EC50 12.76 to 19.01 Span 49.98 to 102.5

Goodness of Fit

Degrees of Freedom 6
R square 0.9790
Absolute Sum of Squares 185.2
Sy.x 5.556

Number of points

Analyzed 10